SPOT5超模式数据处理技术研究
可复制的文字
ֻ 19 ज`ֻ 4 ௹ ဪ`ۋ``ඌ`ა`ႋ`Ⴈ V ol. 19`N o. 4 2004 ୍ 8 ᄅ REM OT E SENSING T ECHNOLOGY AND APPLICATION ```` A ug. 2004 SPOT5 ӑଆൔඔऌԩඌ࣮ 谭 兵, 邢 帅, 徐 青, 李建胜 ( 解放军信息工程大学测绘学院, 河南 郑州 450052)
ᅋေ: 超模式技术是为提高法国 SPOT 5 卫星影像分辨率而采用的一项创新性技术, 尽管已经有相 关的文献对其进行了介绍, 但在 SPOT 5 超模式影像数据处理方面的研究却很少报道。主要对 SPOT 5 超模式影像数据的处理方法进行了研究, 在简要介绍 SPOT5 超模式技术的基础上, 根据超 模式影像数据交错采样的特点进行了基于梅花采样的影像内插, 并对内插影像的去噪与解卷积过 程进行了大量的研究, 分析了影响 SPOT 5 成像系统点扩散函数的主要因素。最后用 SPOT 5 超模 式影像数据进行了试验, 取得了比较理想的效果。 ܱ``Ս: 超模式; 点扩散函数( PSF) ; 影像重建; 超分辨率; 梅花采样; 去噪 ᇏٳোݼ: TP 75``໓ངѓ്: A``໓ᅣщݼ: 1004-0323( 2004) 04-0249-04 ၬ֥ඌ۪ྍ, ࣐ܵၘࣜႵཌྷܱ֥໓ངؓఃࣉྛਔ 1 引 言
նᇁ֥ࢺക, ᄝ SPOT 5 ӑଆൔ႕ཞඔऌԩٚ ሱ 1986 ୍ 2 ᄅؿഝֻ၂॒ۚྟିֹ౯ܴҩ ૫֥࣮ಏޓഒБ֡, ఃԩੀӱބඌ္ѩ҂ؓ ྒ SPOT -1, ֞ଢభູᆸ SPOT ྒ࠹߃ၘࣜؿഝ ຓ܄ष, ၹطႵсေؓఃࣉྛ࣮bࠎႿၛഈಪ്, ਔ 5 ॒ྒbSPOT 5 ྒႿ2002 ୍ 5 ᄅ 4 ರؿഝ, Ч໓ؓ SPOT 5 ӑଆൔඔऌ֥ԩੀӱބඌࣉྛ උ ֻ 2 ս SPOT ྒ, ྒ Ґ Ⴈ ֥൞ ۚ ؇ ູ ਔཌྷܱ֥࣮ބ൫ဒ, ѩ౼֤ਔऎႵ၂קҕॉࡎᆴ 830 kma݅֡ౠູ࢘ 98. 70 ֥ဝ҄ሙ݂߭݅ ֥Ӯݔb ֡, ๙ݖԅ֥֡ൈࡗֹູ֒ൈࡗഈ 10 ׄ 30 ٳ, ߭ 2 SPOT 5 超模式设计 ݂฿ඔູ 26 dbSPOT 5 ྒҐႨ֥൞ೡൔӮཞ,
ૄࣟೡ૭႕ཞ֥ॺ؇ູ60 km, ऎႵิ܂ಆ౯ٓຶ Ԯ֥ SPOT ྒ֥ࢊ૫ഈႵ 4 ۱ཌᆔ ֥ॖܻބ࣍ޣຓ႕ཞඔऌ֥ି৯bھྒႮمݓ CCD Ԯۋఖ, ط SPOT5 ྒؓࢊ૫֥ഡ࠹ࣉྛ SPOT ႕ཞ܄ඳ֥مݓݴ฿࣮ᇏྏ( CNES ) ބઔ ਔࡥ߄, ఃᆺЇݣ၂۱ཌྟ CCD Ԯۋఖᆔਙbᄝ หঘcઔॖୄ܄ඳ৳ކᇅbᇶေӵЇഅູઔหঘ. ؓ႗ࡱഡ࠹ࣉྛႪ߄֥ࠎԤഈ, CNES ؓ၂ᇕ෮໌ ઔॖୄ܄ඳ, ྒೆ݅ުႮ CN ES Ҡቔ, ෮அജ֥ ֥ӑଆൔඌࣉྛਔ࣮ބଆ൫ဒ, іૼೂݔؓ ႕ཞႮ SPOT ႕ཞ܄ඳԛ൲b ԮۋఖҐဢࣉྛކ֥ഡ࠹, ࠧ҂ᄹࡆԮۋఖ֥ SPOT 5 ྒᄝႨֹܴؓҩਵთᅝႵ၂༜ᆭ Ґဢૡ؇္ିิۚ႕ཞ֥ॢࡗٳяੱb ֹ, აభ॒ࠫྒཌྷбࢠ, SPOT 5 ऎႵॖб֥ SPOT 5 ӑଆൔ֥ࠎЧනམࣼ൞Ќӻฐҩఖཞ Ⴊ൝: ିಒЌ႕ཞ֥৵࿃ྟ, ିࣉྛོཟೡ૭, ऎС ჭԄժ҂эބԮۋఖ҂э, ๙ݖஆਙਆஆაӈܿଆ ၛ݅ٚൔࠆ౼৫ุ႕ཞ֥ି৯, ཌྷؓၳ݅৫ุট ൔཌྷ֥ CCD ཌᆔਙটิۚ႕ཞ֥Ґဢૡ؇, ᄝࢊ ඪ൞၂۱ऎն֥ࣉ҄; ఃٳяੱࠫެิۚਔ၂۱ඔ ૫֥۽ၜഡ࠹ഈေᆃਆஆ CCD ཌᆔਙܥק֥ ਈࠩ, ቋۚॖղ֞ 2. 5 m; ᄝᄎႏྟିഈބЇওඔऌ ொ၍ਈbऎุഡ࠹ൌགྷᇏҐႨ֥൞ࡼਆ۱ 12 000 ฐ թᇻa෪ބԮൻ֩၂༢ਙٚ૫Ⴕਔཁᇷ֥ิۚb ҩֆჭ֥ CCD ᆔਙ٢ᇂႿ၂Ӯཞልᇂ֥ࢊ૫ ఃᇏ SPOT 5 ྒᇏູิۚ႕ཞٳяੱطҐႨ ഈ, ᆔਙᄝ x ٚཟބ y ٚཟٳљհष 0. 5 ۱ཞ, Ґ ֥ԷྍྟඌiSupermode ඌ൞၂ཛऎႵᇗေၩ ဢࡗۯބҐဢൈࡗಯಖაӈ֥ܿ SPOT 5 ಆ႕ཞ ൬۠ರ௹: 2003-08-20; ྩרರ௹: 2004-01-13 ቔᆀࡥࢺ: ชѡ( 1975- ) , ଳ, Ѱൖള, ᇶေ࣮ٚཟູജ႕ҩਈაဪۋaဪۋ႕ཞԩaֹྙߌٟᆇb ` ` 250`````````````ဪ`ۋ``ඌ`ა`ႋ`Ⴈ``````````````ֻ 19 ज
ࠆ౼ଆൔЌӻ၂ᇁ, ࢤ൬ਆᆠ 5 m ٳяੱ֥႕ཞѩ 3 超模式数据处理 ٳљԮൻֹ߭૫bູਔࠆ౼٤ӈۚٳяੱ֥႕ཞ, ֹ
૫ԩᇏྏؓᆃਆᆠ႕ཞࣉྛࢌհҐဢ, ֤֞ܿᄵ SPOT 5 ӑଆൔඔऌԩ֥ଢ֥ࣼ൞ၛࢌհҐ ߄ᆞࢌ֥Ґဢඔऌ, ᄝؓ࢘ཌٚཟҐဢࡗۯູ ဢඔऌູࠎԤ, ๙ݖ၂༢ਙֹ֥૫ԩ, ࠆ౼۷ۚٳ яੱ֥ܿᄵ߄ᆞࢌҐဢඔऌbؓࢌհҐဢ֥٤ܿᄵ 3. 5 m( 2. 5 m 2 ) , ೂ 1 ෮ൕbSPOT5 ྒӑ ઼ྙࢲܒ႕ཞࣉྛԩ֥ੀӱೂ 2 ෮ൕ, Їও ଆൔඌ֥ӮۿႋႨ൞၂ཛປಆ֥ඌԷྍ, ି ᄝࠆ౼ 2. 5 m ۚٳяੱ႕ཞ֥ൈ, Ќӻࠆ౼ږॺ ೂ༯҄ᇧ:
ູ60 km a m ٳяੱ֥႕ཞ֥ି৯b ( 1) ࢌհҐဢაଽҬbቋᇔ֥႕ཞ۬ຩ൞Ⴎჰ 5
۬ຩ֤֥֞, ఃҐဢࡗۯູჰ۬ຩ֥၂϶bھ ԩݖӱЇওࡼਆཌᆔਙࠆ౼֥ਆᆠ႕ཞࢌհҬೆ ֞ჰ۬ຩਆПҐဢૡ؇֥ྍ۬ຩᇏ, ؓ၂ུીႵ ᆴ֥თႨਬࣉྛҀቀ( ҕ 1) bᆴ֤ᇿၩ֥൞, ࠧᄝொ၍ਈѩ҂൞ېݺ 0. 5 ۱ཞ, ؓఃࣉྛԩ ط҂ാᇉਈ္൞ॖି֥bൌ࠽ഈ, ᄝொ၍ਈޓཬ ֥౦ঃ༯( ೂ 0. 1 ཞ) ࡼႄఏ໙ีb҂ݖᆃၩሢ ொ၍ਈթᄝ֥༂ҵॖၛ๙ݖֹ૫֥ႵིԩࣉྛҀ ӊb 1`SPOT5 ࢌհҐဢൕၩ ( 2) ಀᄮაࢳजࠒbᆃ൞ֹ૫ԩ৽ᇏቋ 2`SPOT5 ӑଆൔ႕ཞԩੀӱ
طႻ҂ॖࠇಌ֥҆ٳbႮႿ၎ఖᄮല֥ѓሙҵაྐ ሹ֥ඪট༢֥ಆअׄঔݦඔ PSF ॖіൕູ༢ ݼႵܱ, ࠧაॢࡗ໊ᇂႵܱ, ᄮലཨԢ൞၂۱धؓс ܻ࿐ഡСׄঔݦඔaԮۋఖཞჭׄঔݦඔބ ေൈႻ൞٤ӈگᄖ֥ݖӱb၂Ϯটඪ, ྐݼЇওѻ ྒᄎׄঔݦඔ֥जࠒbႮႿPSF ֥ڰ৫ွэ ࠹ᄮലaӈሁሰԩᄮലބਈ߄ᄮല֩҂ ߐӫטᇅԮ ־ݦඔ( M T F, M odulation Transfer টჷ֥ᄮല, ሹ֥ඪটॖၛႨ၂۱ѻٳ҃ؓھ Function) , ູٚьఏ, ॖࡼ႕ཙ SPOT 5 ႕ཞ PSF ݖӱࣉྛࡹଆ, Ⴈ Wiener ੲѯఖࣉྛੲѯ, ཨԢ ֥ၹіൕೂ༯: ࠧ: ࠇཤᄮല֥႕ཙbႮႿ MT F ؓۚӮٺႵ఼ਛ M T F global = M TF opticalM TF detectorM TF motion ( 1) ֥කࡨቔႨ, Ֆطྐݼᄝۚთ֥ྐᄮббࢠ, ഡf xay ູྛਙٚཟ֥ੱ, $X a$Y ູԮۋఖ f ླေࣉྛࢳजࠒ႕ཞनޙ߄, ᄝ௹ຬ֥ᄮലඣ ฐҩཞჭᄝֹ૫ྛਙٚཟ႕֥Ԅժ, V ູྒᄎ ༯࣐ॖିگჰ႕ཞᇏۚӮٺ֥ྐ༏b ྛ֥؇, t i ູࠒٳൈࡗ, ᄵ SPOT 5 ֥ M T F ॖі ႮႿࢳजࠒؓ႕ཞᇉਈ֥႕ཙᇀܱᇗေ, ༯૫ ൕೂ༯: Ֆྐݼԩ֥ܴׄؓھ໙ีࣉྛٳ༅bૌᆩ֡, 2 2 M TF optical( f x, f y) = exp( - A f x+ f y) ( 2) ೡൔӮཞഡС֥ׄঔݦඔ൳؟ᇕၹ֥႕ཙ, ``M T F detector( f x, f y) = exp( - Bf x) sinc( Pf x $X ) ` ֻ 4 ௹````````````ช ѡ֩: SPOT 5 ӑଆൔඔऌԩඌ࣮`````````` 251` sinc( f y $Y ) ( 3) MT Fmotion( f x, f y) = sinc( Pf yVti) ( 4) ఃᇏྏྙЇཌ sinc( x ) קၬູ: sinc( x ) = sinx/ xbႮႿᄝ SPOT 5 ӈܿଆൔ༯, Ԯۋఖฐҩཞ ჭ֥႕Ԅժބᄝൈࡗ ti ଽ֥ᄎູ 5 m, ෮ၛ Vt i= $X = $Y= $ = 5 m , ҕඔ Aބ B ֥ᆴൌ࠽ഈ൞
M TF ᇏ( 1/ 2$X , 0) , ( 0, 1/ 2$Y ) ԩ֥ᆴ, ॖ๙ݖם ս֥ٚم۴ऌ༢ M T F ࢳb 4 试验情况及结论 ༯૫๙ݖ൫ဒؓဒᆣЧ໓భ૫֥ٳ༅ࣉྛဒ
ᆣ: 3`SPOT5 ಆअטᇅࢳטݦඔ( MTF) ( 1) SPOT 5 טᇅࢳטݦඔ( M TF) ֥ٳ༅აဒ M T F ࣉྛଆི֥ݔ, ᆺіൕਔ M TF ᇏ٤ਬ҆ ᆣ ٳ֥ᆴ, Ґဢ۬ຩ֥Ԅժູ 1111b ಆअׄঔݦඔ MT F ൳༢ܻ࿐ഡСׄঔ ( 2) ӑଆൔ႕ཞԩ ݦඔaԮۋఖཞჭׄঔݦඔބྒᄎׄঔݦ Վຓ, ߎؓ SPOT 5 ӑଆൔ႕ཞඔऌ֥ԩࣉ ඔ֥ሸކ႕ཙ, ࣜݖ൫ဒؿགྷ, SPOT5 ֥ܻ࿐Ԯ־ ྛਔ൫ဒ, ᄝ൫ဒݖӱᇏҐႨච 3 Ցཌྟजࠒࣉྛ - 1 ݦඔ֥ࢩᆸੱູ 0. 66 m , طఃฐҩఖཞჭԮ־ ଽҬ, ႨົବੲѯࣉྛᄮലၝᇅࠇཨԢ, ѩႨ 3 ᇏ - 1 ݦඔ֥ࢩᆸੱູ 0. 1 m , ฐҩఖཞჭԮ־ݦඔ
֥ଆಆअ M TF ࣉྛࢳजࠒb 4 ൞۴ऌЧ໓֥ ֥ࢩᆸੱбܻ࿐Ԯ־ݦඔ֥ࢩᆸੱॹ 6 П, і ԩੀӱބඌؓӑଆൔඔऌࣉྛԩభު֥ؓб ૼܻ࿐Ԯ־ݦඔ֥ M TF бԮۋఖฐҩཞჭބᄎ ଆ֥ MT F ֥කࡨ؇ေત֤؟, ၹط M TF ൳ܻ ൫ဒࢲݔ, ఃᇏ 4( a) a4( b) ٳљ൞ჰ 5 m ٳя ࿐ Ԯ־ݦඔ֥MT F ֥႕ཙ۷նb3 ൞ؓಆअ ੱ႕ཞᇏ֥ਆ҂თ, 4( c) a 4( d) ൞۴ऌჰ 4`SPOT5 ӑଆൔ႕ཞԩభުࢲݔؓб ` ` 252`````````````ဪ`ۋ``ඌ`ა`ႋ`Ⴈ``````````````ֻ 19 ज
5 m ٳяੱ႕ཞࣉྛԩު֤֥֞۷ۚٳяੱ ࣜ࠶ࡹഡᇏؿߨሢᄀটᄀᇗေ֥ቔႨ, ႮႿ ӑଆൔ႕ཞbՖᇏॖၛुԛ: ӑଆൔ႕ཞିࠆ౼۷ SPOT ܄ඳᆺิ܂ቋᇔ֥Ӂ, ఃԩੀӱބඌ ؟ჰ႕ཞمٳя֥ྐ༏, ᄝิۚ႕ཞٳяੱٚ ѩ҂ؓຓ܄ष, ၹطЧ໓षᅚ֥ؓ SPOT 5 ӑଆൔ ૫ི֥ݔ൞ཁᇷ֥b ႕ཞೈࡱԩඌބੀӱ֥࣮, Ⴕॖିؓݓྍ Ч໓֥൫ဒࢲݔіૼ: SPOT 5 ӑଆൔഡ࠹ᄝ ၂սྒ֥ഡ࠹ބӑٳяੱ႕ཞԩඌ֥ᄎႨӁ ંഈ൞ᆞಒ֥, ᄝൌᇏ൞Ⴕི֥, ӑଆൔഡ࠹֤ ളࠒ֥ࠞ႕ཙ, ऎႵ၂ק֥ࢹၩၬބҕॉࡎᆴb ᄝ҂ؓཌྷࠏഡСࣉྛն֥ڿ֥౦ঃ༯ࣼି๙ݖԩ ҕॉ໓ང: ࠆ౼ 2. 5 m ٳяੱ֥႕ཞ, Ⴛൈࠆ౼ 5 m ٳя ੱ႕ཞ, ࠞնֹิۚਔഡС֥০Ⴈੱbᆴ֤ᇿၩ֥ q1r`Seguela D, Fratter C , M unier P. SPOT 5 System Part of the J . ൞ SPOT 5 ࠆ౼ ֥ӑ ଆൔ ႕ཞѩ ҂൞ oᆇ ᆞ֥ SPIE Conference on E arth Observing Systems IVqrDenver, Colorado, 1999, 3750: 212j220. 2. 5 m p֥ٳяੱնჿᄝ 2. 5j3 m ᆭࡗ, ࢤ࣍Ⴟ , 2
qr`Latry C, Rouge B. SPOT5 THR Mode Part of the SPIE Con- Ԯ֥ 3 m ٳяੱ႕ཞb `` ference on E arth Observing Systems üqrSan Diego, Califo- . J SPOT 5 ྒӑଆൔ֥ൌགྷაႋႨ, ൞ࡼඌࣉ `` rnia, 1998, 3439: 480j491. ҄აགྷႵ֥Ӯཞ༢ࣉྛᆜކ֥၂۱Ӯۿׅٓ, ॖ q3r`C atherione Lamber-Nebout, Christophe Latry. On-board Opt- ၛࣉ၂҄ᄹ఼ SPOT5 ۚٳяੱဪۋ႕ཞሧਘᄝဪ `` ical Image Compression for Future High Resolution Remote Sensing System sq J r. Application of Digital Image Processing ۋaജ႕ҩਈaᇅaྴགྷൌ֩ਵთ֥ܼٗႋႨbೂ XXIII, 2000, 4115: 332j346. ০Ⴈ SPOT 5 ۚٳяੱဪۋ႕ཞඔऌა؟ܻ௶႕ཞ q4r`ᅦ ᅝଣ, ᇫඍ . ဪۋ ႕ཞࠆ౼აٳ ༅qMr Кࣘ: ॓ ࿐ԛϱ . ඔऌࣉྛྐ༏ವކ, ᄹ఼႕ཞ֥ܻ௶ྐ༏, ิۚ႕ཞ ഠ, 2000. ࢳၲି৯ބି৯; ജ႕ҩਈᇏิۚ႕ཞ֥ק໊ qr`ྚග, ชѡ, ࡹ഻, ֩ . ࠎႿཬ૫ჭ֥؟ჷဪۋ႕ཞۚࣚ؇ 5 .
ି৯ބק໊ࣚ؇; ྴགྷൌᇏ০Ⴈۚٳяੱᆇൌဪ ሙٚمq J r ҩ࿐ჽ࿐Б, 2003, 20( 2) : 124j128. qr`ชѡ . ࠎႿဪۋ႕ཞֹ֥ྙົᇗࡹඌ֥࣮qDr ࢳ٢फ . 6 ۋ႕ཞิֹۚྙߌٟᆇᇏ֥ᆇൌۋb ྐ༏۽ӱն࿐ණൖં໓, 2001. ࣐ܵ SPOT 5 ӑଆൔۚٳяੱ႕ཞඔऌᄝݓ A Research on SPOT5 Supermode Image Processing
T AN Bing, XING Shuai, XU Qing, LI Jian- sheng
( Institute of S urveying and M apping, Inf ormation Engineering University, Zhengzhou 450052, China)
Abstract: Supermode is a completely original technique to improve the resolution of panchromatic images, there are some paper about this technique, but few regards the issue of Supermode image processing. w e w ill focus on this issue in this paper. Based on a brief introduction about the supermode adopted in SPOT 5 satellite, the sophisticated quincunx interpolation processing is considered, w hich can takes advantage of the regularity and structure inherent in interlaced data. Further more, some researches on denoising and deconvolution have been proposed and the main factors affect the PSF of SPOT5 imaging system are analyzed. Finally, w e take some experiments on the SPOT 5 supermode images processing and some satisfactory results are achieved. Key words: Supermode, Point spread function, Image reconstruction, Super-resolution, Quincunx resampling, Denoising
ᅋေ: 超模式技术是为提高法国 SPOT 5 卫星影像分辨率而采用的一项创新性技术, 尽管已经有相 关的文献对其进行了介绍, 但在 SPOT 5 超模式影像数据处理方面的研究却很少报道。主要对 SPOT 5 超模式影像数据的处理方法进行了研究, 在简要介绍 SPOT5 超模式技术的基础上, 根据超 模式影像数据交错采样的特点进行了基于梅花采样的影像内插, 并对内插影像的去噪与解卷积过 程进行了大量的研究, 分析了影响 SPOT 5 成像系统点扩散函数的主要因素。最后用 SPOT 5 超模 式影像数据进行了试验, 取得了比较理想的效果。 ܱ``Ս: 超模式; 点扩散函数( PSF) ; 影像重建; 超分辨率; 梅花采样; 去噪 ᇏٳোݼ: TP 75``໓ངѓ്: A``໓ᅣщݼ: 1004-0323( 2004) 04-0249-04 ၬ֥ඌ۪ྍ, ࣐ܵၘࣜႵཌྷܱ֥໓ངؓఃࣉྛਔ 1 引 言
նᇁ֥ࢺക, ᄝ SPOT 5 ӑଆൔ႕ཞඔऌԩٚ ሱ 1986 ୍ 2 ᄅؿഝֻ၂॒ۚྟିֹ౯ܴҩ ૫֥࣮ಏޓഒБ֡, ఃԩੀӱބඌ္ѩ҂ؓ ྒ SPOT -1, ֞ଢభູᆸ SPOT ྒ࠹߃ၘࣜؿഝ ຓ܄ष, ၹطႵсေؓఃࣉྛ࣮bࠎႿၛഈಪ്, ਔ 5 ॒ྒbSPOT 5 ྒႿ2002 ୍ 5 ᄅ 4 ರؿഝ, Ч໓ؓ SPOT 5 ӑଆൔඔऌ֥ԩੀӱބඌࣉྛ උ ֻ 2 ս SPOT ྒ, ྒ Ґ Ⴈ ֥൞ ۚ ؇ ູ ਔཌྷܱ֥࣮ބ൫ဒ, ѩ౼֤ਔऎႵ၂קҕॉࡎᆴ 830 kma݅֡ౠູ࢘ 98. 70 ֥ဝ҄ሙ݂߭݅ ֥Ӯݔb ֡, ๙ݖԅ֥֡ൈࡗֹູ֒ൈࡗഈ 10 ׄ 30 ٳ, ߭ 2 SPOT 5 超模式设计 ݂฿ඔູ 26 dbSPOT 5 ྒҐႨ֥൞ೡൔӮཞ,
ૄࣟೡ૭႕ཞ֥ॺ؇ູ60 km, ऎႵิ܂ಆ౯ٓຶ Ԯ֥ SPOT ྒ֥ࢊ૫ഈႵ 4 ۱ཌᆔ ֥ॖܻބ࣍ޣຓ႕ཞඔऌ֥ି৯bھྒႮمݓ CCD Ԯۋఖ, ط SPOT5 ྒؓࢊ૫֥ഡ࠹ࣉྛ SPOT ႕ཞ܄ඳ֥مݓݴ฿࣮ᇏྏ( CNES ) ބઔ ਔࡥ߄, ఃᆺЇݣ၂۱ཌྟ CCD Ԯۋఖᆔਙbᄝ หঘcઔॖୄ܄ඳ৳ކᇅbᇶေӵЇഅູઔหঘ. ؓ႗ࡱഡ࠹ࣉྛႪ߄֥ࠎԤഈ, CNES ؓ၂ᇕ෮໌ ઔॖୄ܄ඳ, ྒೆ݅ުႮ CN ES Ҡቔ, ෮அജ֥ ֥ӑଆൔඌࣉྛਔ࣮ބଆ൫ဒ, іૼೂݔؓ ႕ཞႮ SPOT ႕ཞ܄ඳԛ൲b ԮۋఖҐဢࣉྛކ֥ഡ࠹, ࠧ҂ᄹࡆԮۋఖ֥ SPOT 5 ྒᄝႨֹܴؓҩਵთᅝႵ၂༜ᆭ Ґဢૡ؇္ିิۚ႕ཞ֥ॢࡗٳяੱb ֹ, აభ॒ࠫྒཌྷбࢠ, SPOT 5 ऎႵॖб֥ SPOT 5 ӑଆൔ֥ࠎЧනམࣼ൞Ќӻฐҩఖཞ Ⴊ൝: ିಒЌ႕ཞ֥৵࿃ྟ, ିࣉྛོཟೡ૭, ऎС ჭԄժ҂эބԮۋఖ҂э, ๙ݖஆਙਆஆაӈܿଆ ၛ݅ٚൔࠆ౼৫ุ႕ཞ֥ି৯, ཌྷؓၳ݅৫ุট ൔཌྷ֥ CCD ཌᆔਙটิۚ႕ཞ֥Ґဢૡ؇, ᄝࢊ ඪ൞၂۱ऎն֥ࣉ҄; ఃٳяੱࠫެิۚਔ၂۱ඔ ૫֥۽ၜഡ࠹ഈေᆃਆஆ CCD ཌᆔਙܥק֥ ਈࠩ, ቋۚॖղ֞ 2. 5 m; ᄝᄎႏྟିഈބЇওඔऌ ொ၍ਈbऎุഡ࠹ൌགྷᇏҐႨ֥൞ࡼਆ۱ 12 000 ฐ թᇻa෪ބԮൻ֩၂༢ਙٚ૫Ⴕਔཁᇷ֥ิۚb ҩֆჭ֥ CCD ᆔਙ٢ᇂႿ၂Ӯཞልᇂ֥ࢊ૫ ఃᇏ SPOT 5 ྒᇏູิۚ႕ཞٳяੱطҐႨ ഈ, ᆔਙᄝ x ٚཟބ y ٚཟٳљհष 0. 5 ۱ཞ, Ґ ֥ԷྍྟඌiSupermode ඌ൞၂ཛऎႵᇗေၩ ဢࡗۯބҐဢൈࡗಯಖაӈ֥ܿ SPOT 5 ಆ႕ཞ ൬۠ರ௹: 2003-08-20; ྩרರ௹: 2004-01-13 ቔᆀࡥࢺ: ชѡ( 1975- ) , ଳ, Ѱൖള, ᇶေ࣮ٚཟູജ႕ҩਈაဪۋaဪۋ႕ཞԩaֹྙߌٟᆇb ` ` 250`````````````ဪ`ۋ``ඌ`ა`ႋ`Ⴈ``````````````ֻ 19 ज
ࠆ౼ଆൔЌӻ၂ᇁ, ࢤ൬ਆᆠ 5 m ٳяੱ֥႕ཞѩ 3 超模式数据处理 ٳљԮൻֹ߭૫bູਔࠆ౼٤ӈۚٳяੱ֥႕ཞ, ֹ
૫ԩᇏྏؓᆃਆᆠ႕ཞࣉྛࢌհҐဢ, ֤֞ܿᄵ SPOT 5 ӑଆൔඔऌԩ֥ଢ֥ࣼ൞ၛࢌհҐ ߄ᆞࢌ֥Ґဢඔऌ, ᄝؓ࢘ཌٚཟҐဢࡗۯູ ဢඔऌູࠎԤ, ๙ݖ၂༢ਙֹ֥૫ԩ, ࠆ౼۷ۚٳ яੱ֥ܿᄵ߄ᆞࢌҐဢඔऌbؓࢌհҐဢ֥٤ܿᄵ 3. 5 m( 2. 5 m 2 ) , ೂ 1 ෮ൕbSPOT5 ྒӑ ઼ྙࢲܒ႕ཞࣉྛԩ֥ੀӱೂ 2 ෮ൕ, Їও ଆൔඌ֥ӮۿႋႨ൞၂ཛປಆ֥ඌԷྍ, ି ᄝࠆ౼ 2. 5 m ۚٳяੱ႕ཞ֥ൈ, Ќӻࠆ౼ږॺ ೂ༯҄ᇧ:
ູ60 km a m ٳяੱ֥႕ཞ֥ି৯b ( 1) ࢌհҐဢაଽҬbቋᇔ֥႕ཞ۬ຩ൞Ⴎჰ 5
۬ຩ֤֥֞, ఃҐဢࡗۯູჰ۬ຩ֥၂϶bھ ԩݖӱЇওࡼਆཌᆔਙࠆ౼֥ਆᆠ႕ཞࢌհҬೆ ֞ჰ۬ຩਆПҐဢૡ؇֥ྍ۬ຩᇏ, ؓ၂ུીႵ ᆴ֥თႨਬࣉྛҀቀ( ҕ 1) bᆴ֤ᇿၩ֥൞, ࠧᄝொ၍ਈѩ҂൞ېݺ 0. 5 ۱ཞ, ؓఃࣉྛԩ ط҂ാᇉਈ္൞ॖି֥bൌ࠽ഈ, ᄝொ၍ਈޓཬ ֥౦ঃ༯( ೂ 0. 1 ཞ) ࡼႄఏ໙ีb҂ݖᆃၩሢ ொ၍ਈթᄝ֥༂ҵॖၛ๙ݖֹ૫֥ႵིԩࣉྛҀ ӊb 1`SPOT5 ࢌհҐဢൕၩ ( 2) ಀᄮაࢳजࠒbᆃ൞ֹ૫ԩ৽ᇏቋ 2`SPOT5 ӑଆൔ႕ཞԩੀӱ
طႻ҂ॖࠇಌ֥҆ٳbႮႿ၎ఖᄮല֥ѓሙҵაྐ ሹ֥ඪট༢֥ಆअׄঔݦඔ PSF ॖіൕູ༢ ݼႵܱ, ࠧაॢࡗ໊ᇂႵܱ, ᄮലཨԢ൞၂۱धؓс ܻ࿐ഡСׄঔݦඔaԮۋఖཞჭׄঔݦඔބ ေൈႻ൞٤ӈگᄖ֥ݖӱb၂Ϯটඪ, ྐݼЇওѻ ྒᄎׄঔݦඔ֥जࠒbႮႿPSF ֥ڰ৫ွэ ࠹ᄮലaӈሁሰԩᄮലބਈ߄ᄮല֩҂ ߐӫטᇅԮ ־ݦඔ( M T F, M odulation Transfer টჷ֥ᄮല, ሹ֥ඪটॖၛႨ၂۱ѻٳ҃ؓھ Function) , ູٚьఏ, ॖࡼ႕ཙ SPOT 5 ႕ཞ PSF ݖӱࣉྛࡹଆ, Ⴈ Wiener ੲѯఖࣉྛੲѯ, ཨԢ ֥ၹіൕೂ༯: ࠧ: ࠇཤᄮല֥႕ཙbႮႿ MT F ؓۚӮٺႵ఼ਛ M T F global = M TF opticalM TF detectorM TF motion ( 1) ֥කࡨቔႨ, Ֆطྐݼᄝۚთ֥ྐᄮббࢠ, ഡf xay ູྛਙٚཟ֥ੱ, $X a$Y ູԮۋఖ f ླေࣉྛࢳजࠒ႕ཞनޙ߄, ᄝ௹ຬ֥ᄮലඣ ฐҩཞჭᄝֹ૫ྛਙٚཟ႕֥Ԅժ, V ູྒᄎ ༯࣐ॖିگჰ႕ཞᇏۚӮٺ֥ྐ༏b ྛ֥؇, t i ູࠒٳൈࡗ, ᄵ SPOT 5 ֥ M T F ॖі ႮႿࢳजࠒؓ႕ཞᇉਈ֥႕ཙᇀܱᇗေ, ༯૫ ൕೂ༯: Ֆྐݼԩ֥ܴׄؓھ໙ีࣉྛٳ༅bૌᆩ֡, 2 2 M TF optical( f x, f y) = exp( - A f x+ f y) ( 2) ೡൔӮཞഡС֥ׄঔݦඔ൳؟ᇕၹ֥႕ཙ, ``M T F detector( f x, f y) = exp( - Bf x) sinc( Pf x $X ) ` ֻ 4 ௹````````````ช ѡ֩: SPOT 5 ӑଆൔඔऌԩඌ࣮`````````` 251` sinc( f y $Y ) ( 3) MT Fmotion( f x, f y) = sinc( Pf yVti) ( 4) ఃᇏྏྙЇཌ sinc( x ) קၬູ: sinc( x ) = sinx/ xbႮႿᄝ SPOT 5 ӈܿଆൔ༯, Ԯۋఖฐҩཞ ჭ֥႕Ԅժބᄝൈࡗ ti ଽ֥ᄎູ 5 m, ෮ၛ Vt i= $X = $Y= $ = 5 m , ҕඔ Aބ B ֥ᆴൌ࠽ഈ൞
M TF ᇏ( 1/ 2$X , 0) , ( 0, 1/ 2$Y ) ԩ֥ᆴ, ॖ๙ݖם ս֥ٚم۴ऌ༢ M T F ࢳb 4 试验情况及结论 ༯૫๙ݖ൫ဒؓဒᆣЧ໓భ૫֥ٳ༅ࣉྛဒ
ᆣ: 3`SPOT5 ಆअטᇅࢳטݦඔ( MTF) ( 1) SPOT 5 טᇅࢳטݦඔ( M TF) ֥ٳ༅აဒ M T F ࣉྛଆི֥ݔ, ᆺіൕਔ M TF ᇏ٤ਬ҆ ᆣ ٳ֥ᆴ, Ґဢ۬ຩ֥Ԅժູ 1111b ಆअׄঔݦඔ MT F ൳༢ܻ࿐ഡСׄঔ ( 2) ӑଆൔ႕ཞԩ ݦඔaԮۋఖཞჭׄঔݦඔބྒᄎׄঔݦ Վຓ, ߎؓ SPOT 5 ӑଆൔ႕ཞඔऌ֥ԩࣉ ඔ֥ሸކ႕ཙ, ࣜݖ൫ဒؿགྷ, SPOT5 ֥ܻ࿐Ԯ־ ྛਔ൫ဒ, ᄝ൫ဒݖӱᇏҐႨච 3 Ցཌྟजࠒࣉྛ - 1 ݦඔ֥ࢩᆸੱູ 0. 66 m , طఃฐҩఖཞჭԮ־ ଽҬ, ႨົବੲѯࣉྛᄮലၝᇅࠇཨԢ, ѩႨ 3 ᇏ - 1 ݦඔ֥ࢩᆸੱູ 0. 1 m , ฐҩఖཞჭԮ־ݦඔ
֥ଆಆअ M TF ࣉྛࢳजࠒb 4 ൞۴ऌЧ໓֥ ֥ࢩᆸੱбܻ࿐Ԯ־ݦඔ֥ࢩᆸੱॹ 6 П, і ԩੀӱބඌؓӑଆൔඔऌࣉྛԩభު֥ؓб ૼܻ࿐Ԯ־ݦඔ֥ M TF бԮۋఖฐҩཞჭބᄎ ଆ֥ MT F ֥කࡨ؇ေત֤؟, ၹط M TF ൳ܻ ൫ဒࢲݔ, ఃᇏ 4( a) a4( b) ٳљ൞ჰ 5 m ٳя ࿐ Ԯ־ݦඔ֥MT F ֥႕ཙ۷նb3 ൞ؓಆअ ੱ႕ཞᇏ֥ਆ҂თ, 4( c) a 4( d) ൞۴ऌჰ 4`SPOT5 ӑଆൔ႕ཞԩభުࢲݔؓб ` ` 252`````````````ဪ`ۋ``ඌ`ა`ႋ`Ⴈ``````````````ֻ 19 ज
5 m ٳяੱ႕ཞࣉྛԩު֤֥֞۷ۚٳяੱ ࣜ࠶ࡹഡᇏؿߨሢᄀটᄀᇗေ֥ቔႨ, ႮႿ ӑଆൔ႕ཞbՖᇏॖၛुԛ: ӑଆൔ႕ཞିࠆ౼۷ SPOT ܄ඳᆺิ܂ቋᇔ֥Ӂ, ఃԩੀӱބඌ ؟ჰ႕ཞمٳя֥ྐ༏, ᄝิۚ႕ཞٳяੱٚ ѩ҂ؓຓ܄ष, ၹطЧ໓षᅚ֥ؓ SPOT 5 ӑଆൔ ૫ི֥ݔ൞ཁᇷ֥b ႕ཞೈࡱԩඌބੀӱ֥࣮, Ⴕॖିؓݓྍ Ч໓֥൫ဒࢲݔіૼ: SPOT 5 ӑଆൔഡ࠹ᄝ ၂սྒ֥ഡ࠹ބӑٳяੱ႕ཞԩඌ֥ᄎႨӁ ંഈ൞ᆞಒ֥, ᄝൌᇏ൞Ⴕི֥, ӑଆൔഡ࠹֤ ളࠒ֥ࠞ႕ཙ, ऎႵ၂ק֥ࢹၩၬބҕॉࡎᆴb ᄝ҂ؓཌྷࠏഡСࣉྛն֥ڿ֥౦ঃ༯ࣼି๙ݖԩ ҕॉ໓ང: ࠆ౼ 2. 5 m ٳяੱ֥႕ཞ, Ⴛൈࠆ౼ 5 m ٳя ੱ႕ཞ, ࠞնֹิۚਔഡС֥০Ⴈੱbᆴ֤ᇿၩ֥ q1r`Seguela D, Fratter C , M unier P. SPOT 5 System Part of the J . ൞ SPOT 5 ࠆ౼ ֥ӑ ଆൔ ႕ཞѩ ҂൞ oᆇ ᆞ֥ SPIE Conference on E arth Observing Systems IVqrDenver, Colorado, 1999, 3750: 212j220. 2. 5 m p֥ٳяੱնჿᄝ 2. 5j3 m ᆭࡗ, ࢤ࣍Ⴟ , 2
qr`Latry C, Rouge B. SPOT5 THR Mode Part of the SPIE Con- Ԯ֥ 3 m ٳяੱ႕ཞb `` ference on E arth Observing Systems üqrSan Diego, Califo- . J SPOT 5 ྒӑଆൔ֥ൌགྷაႋႨ, ൞ࡼඌࣉ `` rnia, 1998, 3439: 480j491. ҄აགྷႵ֥Ӯཞ༢ࣉྛᆜކ֥၂۱Ӯۿׅٓ, ॖ q3r`C atherione Lamber-Nebout, Christophe Latry. On-board Opt- ၛࣉ၂҄ᄹ఼ SPOT5 ۚٳяੱဪۋ႕ཞሧਘᄝဪ `` ical Image Compression for Future High Resolution Remote Sensing System sq J r. Application of Digital Image Processing ۋaജ႕ҩਈaᇅaྴགྷൌ֩ਵთ֥ܼٗႋႨbೂ XXIII, 2000, 4115: 332j346. ০Ⴈ SPOT 5 ۚٳяੱဪۋ႕ཞඔऌა؟ܻ௶႕ཞ q4r`ᅦ ᅝଣ, ᇫඍ . ဪۋ ႕ཞࠆ౼აٳ ༅qMr Кࣘ: ॓ ࿐ԛϱ . ඔऌࣉྛྐ༏ವކ, ᄹ఼႕ཞ֥ܻ௶ྐ༏, ิۚ႕ཞ ഠ, 2000. ࢳၲି৯ބି৯; ജ႕ҩਈᇏิۚ႕ཞ֥ק໊ qr`ྚග, ชѡ, ࡹ഻, ֩ . ࠎႿཬ૫ჭ֥؟ჷဪۋ႕ཞۚࣚ؇ 5 .
ି৯ބק໊ࣚ؇; ྴགྷൌᇏ০Ⴈۚٳяੱᆇൌဪ ሙٚمq J r ҩ࿐ჽ࿐Б, 2003, 20( 2) : 124j128. qr`ชѡ . ࠎႿဪۋ႕ཞֹ֥ྙົᇗࡹඌ֥࣮qDr ࢳ٢फ . 6 ۋ႕ཞิֹۚྙߌٟᆇᇏ֥ᆇൌۋb ྐ༏۽ӱն࿐ණൖં໓, 2001. ࣐ܵ SPOT 5 ӑଆൔۚٳяੱ႕ཞඔऌᄝݓ A Research on SPOT5 Supermode Image Processing
T AN Bing, XING Shuai, XU Qing, LI Jian- sheng
( Institute of S urveying and M apping, Inf ormation Engineering University, Zhengzhou 450052, China)
Abstract: Supermode is a completely original technique to improve the resolution of panchromatic images, there are some paper about this technique, but few regards the issue of Supermode image processing. w e w ill focus on this issue in this paper. Based on a brief introduction about the supermode adopted in SPOT 5 satellite, the sophisticated quincunx interpolation processing is considered, w hich can takes advantage of the regularity and structure inherent in interlaced data. Further more, some researches on denoising and deconvolution have been proposed and the main factors affect the PSF of SPOT5 imaging system are analyzed. Finally, w e take some experiments on the SPOT 5 supermode images processing and some satisfactory results are achieved. Key words: Supermode, Point spread function, Image reconstruction, Super-resolution, Quincunx resampling, Denoising